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Facile reduction of malonate derivatives using NaBH4/Br2:
an efficient route to 1,3-diols
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Abstract

Borane–dimethoxyethane generated from sodium borohydride–bromine mixtures efficiently reduces a wide range of malonate deriva-
tives to the corresponding 1,3-diols. This new reagent system represents a milder alternative to current methods available, providing the
requisite 1,3-diols in higher yields over shorter reaction times.
� 2007 Elsevier Ltd. All rights reserved.
The reduction of malonate derivatives is a convenient
method for the preparation of symmetrical 1,3-diols.1a–f

This reaction has received a significant amount of attention
over recent years and has been employed in numerous syn-
thetic efforts.1a,b Generally, powerful hydride reducing
agents such as lithium aluminum hydride1c and DIBAL1d

are employed to achieve this transformation. Unfortu-
nately, deactivation of these basic reagents via enolization
of the malonate starting materials often results in mixtures
of the desired 1,3-diol products and other higher oxidation
state reduction products.1f In an attempt to minimize the
formation of undesired side products, milder reagents such
as borane complexes2a–c have been utilized; however,
extended reaction times and large reagent excesses are
often required to obtain appreciable conversions.2b,c In
some cases this has been attributed to a-deprotonation of
the malonate by the borane complex.1c,3

Recently, we required a highly efficient reduction of
malonate 1 to the corresponding diol 2, a key intermediate
in the synthesis of a potential drug candidate. Our preli-
minary investigations into this transformation are detailed
in Table 1.
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Attempts to reduce malonate 1 to diol 2 via the mixed
anhydride4 or with the strong reducing agent, super-
hydride5 (Table 1, entries 1 and 2) provided none of
the desired product. Although Red-Al did reduce the
b-carboxyester functionality, concomitant removal of
the aromatic bromide was also observed affording exclu-
sively diol 3 (entry 3).6 To minimize these problems, the
commercially available reducing agents BH3�THF2a and
BH3�DMS2b were investigated. Several unidentified by-
products in addition to the two cyclopropyl by-products
4 and 5 (entries 4 and 5) were obtained under these condi-
tions. These could be minimized to ca. 10% by preparing
the borane solution in situ from sodium borohydride and
boron trifluoride7 complexes (entries 6 and 7); however,
these conditions proved to be somewhat capricious afford-
ing the desired product in irreproducible quantities. Other
methods for producing borane solutions such as sodium
borohydride–iodine in THF8 (entry 8) resulted in the
formation of significant quantities of 4-iodo-butanol,8

cyclopropane by-products 4 and 5, and several other
unidentified products in variable amounts. The formation
of the 4-iodo-butanol impurity could be eliminated by
employing DME as a solvent; however, significantly
longer reaction times were required and increased quanti-
ties of the cyclopropane compounds 4 and 5 were observed.
Interestingly, when bromine was substituted for iodine
the cyclopropane by-products were only formed in
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Table 1
Screen of standard reducing agents
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Entry Conditions Assay yield 2a (%)

1 NaBH4/iBuCO2Cl —
2 Superhydride —
3 Red-Al 0
4 BH3�THF <10
5 BH3�DMS <10
6 NaBH4/BF3�OEt2 50–90
7 NaBH4/BF3�THF �90
8 NaBH4/I2 90 in THF 65 in DME
9 NaBH4/Br2 94–98

a Assay yield was determined by HPLC calibrated with analytically pure product.
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small quantities (�5%) increasing the yield of the desired
product to �94%. Furthermore, the relative rate of the
reaction was higher, resulting in reaction times of around
3–4 h versus >24 h as in the sodium borohydride–iodine
reaction.

With this interesting result in hand, we decided to probe
the substrate scope of this reduction. We initially investi-
gated the curious discontinuity in rate between the reac-
tions with iodine and bromine. As shown in Scheme 1,
reduction of model diester 6 to diol 7 was carried out using
the sodium borohydride–bromine and the sodium borohy-
dride–iodine protocols described previously. As observed
for the more complex malonate derivative 1, the reduction
rate of diester 6 with NaBH4/Br2 was greater than that of
the NaBH4/I2 method affording 91% and 2% assay yields
of diol 7, respectively (Scheme 1). Since the sodium iodide
by-product was completely solubilized in DME, we sus-
pected that this may inhibit the reaction. Moreover, when
excess sodium iodide was added to the reaction significant
retardation of the rate was observed yielding only 11% of
product after 48 h at room temperature further supporting
our hypothesis. Indeed, theoretical studies by Frenking
et al. indicated that complexation of p-donor groups such
as iodide increases the hydride affinity of boron.9 In princi-
ple, this could lead to a reducing agent with much less
reduction potential than the corresponding borane–DME
complex.
With a robust, practical reduction protocol established,
we began to evaluate other carboxylate derivatives bearing
functionality that has proven problematic for other meth-
ods. As shown in Table 2, the reaction cleanly reduced
phenylacetic acid, the corresponding ethyl ester and the
N-methylamide to their alcohol and amine products in
good yield (entries 1–3). More importantly, several chal-
lenging malonate derivatives were smoothly converted to
their corresponding 1,3-diols.

Hindered malonates1b (entry 9), electron rich aryl malo-
nates1b,2d (entry 6) and nitro-aryl malonates1b,c (entry 7)
were readily reduced to their 1,3-diol derivatives in signifi-
cantly greater yield than previously obtained under existing
protocols.1b,c,2d As expected from our lead result, reduction
of other malonic acid derivatives using this protocol was
readily achieved (entries 5 and 10). In particular, the reduc-
tion of malonate derivative 8 (entry 10) described by Jar-
vest et al. had proved to be particularly problematic only
affording the desired diol in 31% yield.10a Pleasingly, our
improved procedure provided the diol product in 87%
yield.

In summary, we have developed a robust reduction of
esters, acids, amides and malonate derivatives using
NaBH4/Br2.11 In particular, challenging aryl malonates
proved to be excellent substrates for reduction providing
the corresponding 1,3-diols in high yield. Studies are cur-
rently underway to extend the scope of this methodology



Table 2

Entry Substratea Productb Temperature (�C)/time (h) Isolated yield (%)

1 Ph CO2Et Ph
OH �10 to 20/1.5 92c

2 Ph CO2H Ph
OH �10 to 20/1.5 93c

3 Ph
NHMe

O
Ph

NHMe �10 to 20/48 82d

4
Ph CO2Et

CO2Et

Ph
OH

OH
0 to 20/24 91d

5
Ph CO2H

CO2Me

Ph
OH

OH
�10 to 20/0.5 92d

6 CO2Me

CO2Me

MeO

OH

OH

MeO

0 to 20/24 91d

7 CO2Me

CO2Me

O2N
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OH
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0 to 20/4 92d

8
Bn CO2Et

CO2Et
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OH

OH
0 to 20/15 98d

9
Ph CO2Et

CO2Et

Me Ph
OH

OH

Me

0 to 20/15 91d

10
CO2H

CO2Et

BnO
8

OH

OH

BnO

�10 to 20/15 87d

11
CO2Et

CO2Et

OH

OH

0 to 20/15 88d,e

a All substrates were obtained commercially unless otherwise indicated.
b All known products were characterized via direct comparison of 1H NMR data to the literature references detailed within the text, or commercially

available samples from Aldrich Chemical Co.
c 2.2 equiv NaBH4/1 equiv Br2 required.
d 5 equiv NaBH4/2.2 equiv Br2 required.
e Characterized via comparison of melting point data11 and 1H NMR.
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into other borane mediated processes, the results of which
will be reported in due course.
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